ERIK MCLEAN / UNSPLASH

Physikalisches Kolloquium

Friday, 17. May 2024 5:00 pm  Particle accelerator on a nanophotonic chip

Prof. Dr. Peter Hommelhoff, Institut für Physik der Kondensierten Materie, Universität Erlangen Particle accelerators are ubiquitous tools across scientific, industrial, and medical domains, pivotal not only in advancing particle physics but also in applications such as sterilization and radiotherapy in modern healthcare facilities. Traditionally, these accelerators harness microwave fields to impart momentum to swift electrons or other charged particles. Our research explores a paradigm shift, demonstrating the feasibility of employing laser light to achieve electron acceleration. Crucially, this approach necessitates structures capable of generating accelerating fields at the scale of the driving laser's wavelength – a scale substantially smaller than conventional accelerators, on the order of microns. Leveraging advancements in nanofabrication, we have developed the nanophotonic counterpart of an accelerator, enabling the acceleration of electrons through purely optical forces. A milestone achievement has been the realization of the electron "bucket," effectively confining and accelerating electrons within a 220nm narrow, 500 micron long accelerator channel. In our experiments, we have demonstrated electron acceleration from 28 keV to over 40 keV, marking significant progress towards compact and efficient light-driven electron devices. Furthermore, we explore intriguing phenomena arising from the natural bunching of electrons on attosecond timescales and the ability to shape individual electron wavepackets. These capabilities open new vistas for electron imaging, particularly in the realm of quantum mechanical phase imaging. In this presentation, we provide an overview of our experimental progress, offering insights into the potential of light-driven electron accelerator devices and electron wavepacket shaping and coupling.

Particle Colloquium

Recent results in charm physics at LHCb

Dr. Dominik Mitzel, Technische Universität Dortmund

Astronomy colloquium

Tuesday, 14. May 2024 4:30 pm  Cosmology with Galaxy Clusters

Professor Anja von der Linden, Stony Brook University The observed number of galaxy clusters provides a sensitive probe of the structure of the Universe by measuring the evolution of the halo mass function. However, already current cluster surveys are systematically limited by uncertainties in the relation between cluster mass and observables (e.g. the number of galaxies, X-ray luminosity, or the imprint on the Cosmic Microwave Background). I will discuss the challenges in determining mass-observable relations, and how the combination of multi-wavelength observations, including weak gravitational lensing, can address these. I will summarize current cluster cosmology results for the different selection techniques, including some of the tightest constraints on the dark energy equation of state from a single probe, and will comment on the role of projection effects for optically selected cluster samples. I will conclude with an outlook towards cluster cosmology with upcoming sky surveys, especially with Rubin/LSST. Those unable to attend the colloquium in person are invited to participate online through Zoom (Meeting ID: 942 0262 2849, passcode 792771) using the link: https://eu02web.zoom-x.de/j/94202622849?pwd=dGlPQXBiUytzY1M2UE5oUDRhbzNOZz09 During her visit to Heidelberg, Professor von Der Linden will be available for meetings by arrangement with her host, Joachim Wambsganss (jkw@ari.uni-heidelberg.de).

Center for Quantum Dynamics Colloquium

Wednesday, 22. May 2024 4:30 pm  Dissipation in Bose-Einstein Condensates

Prof. Dr. Herwig Ott, Fachbereich Physik, TU Kaiserslautern