MULYADI / UNSPLASH

Aktuelles

AIM bringt Studierende und Forschungsgruppen zusammen

Rund 500 Studierende informierten sich bei der AIM über Forschung an der Fakultät.   mehr ...
FABIENNE GANTENBEIN

NTMxISOQUANT SciArt Residency startet mit preisgekrönter Dramatikerin

Ein interdisziplinäres Projekt von ISOQUANT und dem Nationaltheater Mannheim bringt Quantenphysik und Theater in kreativen Dialog.   mehr ...
SANDRA KLEVANSKY

Lehrpreise vergeben

Vier Lehrende erhalten Auszeichnungen für besonders gelungene Lehre im Wintersemester 2024/25.   mehr ...
ALESSA KLIOBA

Felix Röper verteidigt Titel bei der Heidelberg Integration Bee

Beim mitreißenden Integral-Wettkampf der jDPG brillierten Studierende vor fast 300 Zuschauenden – sogar Integrale von Fieldsmedaillen-Tr

Physikalisches Kolloquium

Freitag, 27. Juni 2025 17:00 Uhr  Melting of ice

Prof. Dr. Detlef Lohse , Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen und University of Twente

The quantitative understanding of glacial ice melting into the ocean is one of the most outstanding challenges in environmental fluid dynamics. The lack of understanding is on a fundamental level, due to the highly complex multi-scale, multi-physics nature of the problem. The process involves intricate multi- way coupling effects, including thermal convection, salinity, ocean current, and radiation, etc. As ice melts into the surrounding salty water, a decrease in local salt concentration leads to reduced water density, inducing upward buoyant forces and, consequently, upward flow. This flow dynamically interacts with the ice, resulting in a feedback loop of further melting (Stefan problem). Our investigation employs direct numerical simulations with the phase field method. To capture the intricacies of melting dynamics within turbulent flows, we implement a multiple-resolution strategy for salinity and phase field simulations [3]. The versatility of our method is demonstrated through successful applications to diverse melting scenarios, including the formation of melt ponds [2], melting in Rayleigh-Bénard convection [4], vertical convection with fresh water [1], and vertical convection with salty water [3]. In this presentation, we showcase results obtained across these various geometries. This work contributes to advancing our understanding of the complex dynamics involved in glacial ice melting within oceanic environments.

References

1. Rui Yang, Kai Leong Chong, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. Abrupt transition from slow to fast melting of ice. Phys. Rev. Fluids, 7(8):083503, 2022.

2. Rui Yang, Christopher J. Howland, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. Bistability in radiatively heated melt ponds. Phys. Rev. Lett., 131:234002, Dec 2023.

3. Rui Yang, Christopher J. Howland, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. Ice melting in salty water: layering and non-monotonic dependence on the mean salinity. J. Fluid Mech., 969:R2, 2023.

4. Rui Yang, Christopher J Howland, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. Morphology evolution of a melting solid layer above its melt heated from below. J. Fluid Mech., 956:A23, 2023.


Dekanat

 

Kontakt

Dekanat der Fakultät für Physik und Astronomie
Im Neuenheimer Feld 226
69120 Heidelberg

E-Mail: dekanat (at) physik.uni-heidelberg.de

Tel: +49 6221 54 19648